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Finite-size scaling of the error threshold transition in finite
populations
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Abstract. The error threshold transition in a stochastic (i.e. finite population) version of the
quasispecies model of molecular evolution is studied using finite-size scaling. For the single-
sharp-peak replication landscape, the deterministic model exhibits a first-order transition at
Q = Qc = 1/a, whereQ is the probability of exact replication of a molecule of lengthL→∞,
anda is the selective advantage of the master string. For sufficiently large population size,N ,
we show that in the critical region the characteristic time for the vanishing of the master strings
from the population is described very well by the scaling assumptionτ = N1/2fa [(Q−Qc)N

1/2],
wherefa is ana-dependent scaling function.

An elusive issue in the extension of Eigen’s quasispecies model [1] of molecular evolution to
finite populations is the characterization of the so-called error threshold phenomenon which
limits the length of the molecules and, consequently, the amount of information they can store
[2]. This phenomenon poses an interesting challenge for the theories of the origin of life, since
it prevents the emergence of huge molecules which could carry the necessary information for
building a complex metabolism. Moreover, since modern theories of integration of information
in pre-biotic systems involve the compartmentation of a small number of molecules, the
understanding of the effects of the error propagation in finite populations has become a major
issue for the theories of the origin of life [3].

The quasispecies model was originally formulated within a deterministic chemical kinetic
framework based on a set of ordinary differential equations for the concentrations of the
different types of molecules that compose the population. Such formulation, however, is
valid only in the limit where the total number of molecules, denoted byN , goes to infinity.
In the binary version of the quasispecies model, a molecule is represented by a string ofL

digits (s1, s2, . . . , sL), with the variablessα allowed to take on only two different values, say
sα = 0, 1, each of which representing a different type of monomer used to build the molecule.
The concentrationsxi of molecules of typei = 1, 2, . . . ,2L evolve in time according to the
equations [1,2]

dxi
dt
=
∑
j

Wijxj −8(t)xi (1)

where8(t) is a dilution flux that keeps the total concentration constant. This flux introduces a
nonlinearity in equation (1), and is determined by the condition

∑
i dxi/dt = 0. In particular,

assuming
∑

i xi = 1 yields

8 =
∑
i,j

Wij xj . (2)
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The elements of the replication matrixWij depend on the replication rate or fitnessAi of the
strings of typei, as well as on the Hamming distanced(i, j) between stringsi andj . They
are given by [1,2]

Wii = Aiqν (3)

and

Wij = AjqL−d(i,j)(1− q)d(i,j) i 6= j (4)

where 06 q 6 1 is the single-digit replication accuracy, which is assumed to be the same for
all digits.

The quasispecies concept and the error threshold phenomenon are illustrated more neatly
for the single-sharp-peak replication landscape, in which we ascribe the replication ratea > 1
to the so-called master string, say(1, 1, . . . ,1), and the replication rate 1 to the remaining
strings. In this context, the parametera is termed the selective advantage of the master string.
As the replication accuracyq decreases, two distinct regimes are observed in the population
composition in the deterministic case: thequasispeciesregime characterized by the presence
of the master string together with its close neighbours, and theuniform regime where the 2L

strings appear in the same proportion. The transition between these regimes takes place at the
error thresholdqc, whose value depends on the parametersL anda [1, 2]. However, even in
the deterministic case,N → ∞, a genuine thermodynamic order–disorder phase transition
will occur only in the limitL→∞ [4–6]. To study this transition for largeL, it is convenient
to introduce the probability of exact replication of an entire string, namely,

Q = qL (5)

so that thediscontinuoustransition occurs at

Qc = 1

a
(6)

forL→∞ [1,6]. A recent finite-size scaling study of the sharpness of the threshold transition
indicates that the characteristics of the transition persist across a range ofQ of orderL−1 about
Qc [7].

Although several theoretical frameworks have been proposed to generalize the
deterministic kinetic formulation of the quasispecies model so as to take into account the effect
of finite N [8–13], the somewhat uncontrolled approximations used in those analyses have
hindered a precise characterization of the error threshold for finite populations. In particular,
Nowak and Schuster [10] employed a simple birth and death model, whose deterministic
limit, however, did not yield the stationary distribution predicted by equation (1), as well as
numerical simulations based on Gillespie’s algorithm [14] to show that an appropriately defined
Qc(N) tends to the deterministic value 1/a with N−1/2 for sufficiently large populations. A
similar result was obtained by neglecting the possibility of multiple errors occurring during
the replication of a molecule [12]. A more drastic approximation that neglects linkage
disequilibrium at the population level yields thatQc(N) increases linearly with 1/N [13].
Of course, since there is no generally accepted definition of the error threshold for finiteN

(and for finiteL as well), denoted above byQc(N), there are some arbitrariness in those
analyses.

In this paper we follow a more direct approach to characterize the error threshold transition
for finiteN , which dispenses with a definition forQc(N). As mentioned before, since a genuine
phase transition occurs in the limitsN → ∞ andL → ∞ only, we study a stochastic (i.e.
finiteN ) version of the quasispecies model withL→∞ andq → 1 so thatQ = qL is finite.
In this limit the problem simplifies enormously as the probability of any string becoming a
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master string due to replication errors is of order 1/L and so can be safely neglected. Besides,
since for the single-sharp-peak replication landscape the strings can be classified in two types
only: the master strings and the error tail, which comprises all other strings, the population
at any given generation can be described by the single integern = 0, 1, . . . , N , which gives
the number of master strings in the population. The goal then is to calculate the probability
distribution that at generationt there are exactlyn master strings in the population. This
quantity, denoted byPt (n), obeys the recursion equation

Pt+1(n) =
N∑
m=0

T (n,m)Pt (m) (7)

with the elements of the transition matrixT given by

T (n,m) =
m∑
k=n

(
N

k

)(
k

n

)
wkm(1− wm)N−kQn(1−Q)k−n (8)

where

wm = ma

N −m +ma
(9)

is the relative fitness of the master strings. In writing equation (8) we have followed the
prescription used in the implementation of the standard genetic algorithm [15]: first the natural
selection process acting via differential reproduction is considered and then the mutation
process. A similar formulation was used to study the Muller’s ratchet phenomenon in a
smooth, multiplicative replication landscape in which only unfavourable mutations are allowed,
leading to a continuous decrease in the average fitness of the population [16]. We note that∑

n T (n,m) = 1 ∀m andT (0, 0) = 1. Moreover, the largest eigenvalue ofT is λ0 = 1 and its
corresponding eigenvector isl†0 = (1, 0, . . . ,0). This stochastic model is easily recognized as
the celebrated Kimura–Crow infinite alleles model [17,18] which has been extensively studied
within the diffusion approximation for largeN . However, for arbitrary values ofQ anda
the solutions of the partial differential equations are too complicated to be of any use for our
purposes [18].

As for finite N the fluctuations, either in the reproduction or mutation processes, will
ultimately lead to the irreversible loss of all copies of the master string from the population,
the asymptotic solution of equation (7) is simplyP∞(n) = δn0. Our goal is to determine how
the characteristic time,τ , that governs the vanishing of the master strings from the population
depends onN ,Q anda.

Before proceeding to the analysis of the stochastic problem, it is instructive to briefly
discuss the deterministic limitN → ∞. In this case the average number of master strings
obeys the recursion equation

〈n〉t+1 =
N∑
n=0

N∑
m=0

nT (n,m)Pt (m)

= Qa〈n〉t (10)

whose solution is〈n〉t = (Qa)t 〈n〉0. Hence, in the deterministic regime we find

τ = − 1

ln(Qa)
(11)

which diverges atQ = Qc = 1/a, thus signalling the existence of a phase transition in the
limit N → ∞. Clearly, forQ > Qc the master strings are always present in the population
so thatτ is infinite in this entire region.
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τ

Figure 1. Logarithm of the characteristic time for the vanishing of the master strings from the
population, lnτ , as a function of the probability of exact replication,Q, for a = 2, andN = 100
(∗), 200 (♦), 300 (�), 500 (4), and 600 (×). The solid line is the theoretical prediction forN →∞.

We now consider the finiteN regime. In this case the recursion equations for the moments
of n do not yield useful information since, as usual, the moment of orderp depends on the
moment of orderp + 1 evaluated at the previous generation [16]. We then resort to a direct
calculation of the probability distributionPt (m). More specifically, we will focus on the
calculation ofPt (0), since this is the quantity that measures the rate of vanishing of the master
strings from the population. AlthoughPt (0) could be evaluated through a series of matrix
multiplications, a simple linear algebra calculation yields [18]

Pt (0) =
N∑
n=0

cnln0λ
t
n

= 1 + c1l10λ
t
1 + · · · + cN lN0λ

t
N (12)

whereλn are the eigenvalues ofT, ln0 are the zeroth components of the eigenvectorsln, andcn
are parameters that depend on the initial stateP0(n). Also we have usedλ0 = l00 = c0 = 1.
Assuming, without loss of generality, that 1> λ1 > · · · > λN > 0, in the limit of larget we
find

1− Pt (0) ≈ Ce−t/τ (13)

where

τ = − 1

ln λ1
(14)
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τ

Figure 2. Logarithm of the characteristic time for the vanishing of the master strings from the
population, lnτ , calculated atQc = 1/a as a function of the logarithm of the population size, lnN ,
for a = 2 (◦), 10 (4), and 50 (�).

andC is a constant that depends on the initial state. Thus the problem becomes the one of finding
the second largest eigenvalue of the nonsymmetric matrixT. Since the largest eigenvalue and
its corresponding eigenvector are already known, this numerical problem yields easily to the
vector iteration method [19]. Alternatively, we could findτ by following the time evolution
of Pt (0), obtained directly through the recursion equations (7), for a few generations and then
plotting ln[1− Pt (0)] against the generation numbert . We have verified that both methods
yield the same results forτ .

In figure 1 we present the dependence of lnτ on the probability of exact replication of an
entire string,Q, for a = 2 and several values ofN . The finiteN effects are negligible for
values ofQ smaller than, though not too close,Qc, as indicated by the very good agreement
between the finiteN data and the theoretical prediction forN → ∞ given in equation (11).
Since we expectτ to increase exponentially with increasingN for Q > Qc, and to tend
towards its limiting value, equation (11), also exponentially withN for Q < Qc, the issue
is then to determine the dependence ofτ onN at the critical pointQ = Qc. In figure 2 we
present lnτ calculated atQc = 1/a against lnN for different values ofa. These results clearly
indicate that at the critical pointτ increases likeN1/2, irrespective of the value ofa. Once we
have identified the rescaling of lnτ that leads to the collapsing of the data for differentN at
Q = Qc, the next step is to determine the sharpness of the transition, namely, the range of
Q aboutQc where the transition characteristics persists. This is achieved by assuming that
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τ

Figure 3. Properly rescaled logarithm of the characteristic time for the vanishing of the master
strings from the population, lnτ/ lnN1/2, as a function of(Q−Qc)N

1/2 for (from top to bottom
atQ = Qc) a = 2, 10 and 50. The convention isN = 200 (♦), 300 (�), 400 (◦), 500 (4), and
600 (×). Fora = 10 and 50 only the data forN > 400 are presented.

the size of this region shrinks to zero likeN−1/ν asN → ∞, where the exponentν > 0
is estimated using finite-size scaling or, more precisely, the data collapsing method [20]. In
figure 3 we show the collapse of the data for differentN obtained withν = 2 for a = 2, 10
and 50. Although fora = 2 we can achieve a good-quality data collapse using relatively small
population sizes (N > 200), for larger values ofa, however, a similar quality of collapsing
can only be obtained using larger values ofN (i.e.N > 400). In summary, the results of the
data collapsing method indicate that the dependence ofτ onN in the critical region is very
well described by the scaling assumption

τ = N1/2fa[(Q−Qc)N
1/2] (15)

wherefa is a scaling function, whose specific form depends on the parametera.
To appreciate the effect of the selective advantage parametera on the quality of the data

collapsing results presented in figure 3, we next consider in some detail the casea→∞ and
N finite. Usingwm→ 1 form > 0 yields

T (n,m) = T (n) =
(
N

n

)
Qn(1−Q)N−n m > 0. (16)

As before,T (0, 0) = 1 andT (n, 0) = 0 forn > 0. In this case the eigenvalues ofT can easily
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be analytically calculated yieldingλ0 = 1, λ1 =
∑N

n=1 T (n), λ2 = · · · = λN = 0. Hence,

τ = − 1

ln[1− (1−Q)N ]
. (17)

Finally, taking the limitsQ→ Qc = 0 andN →∞, we can easily verify thatν = 1 in this
limit. This interesting result suggests that uncontrolled approximations and simplifications
of the original model which enhance the selective advantage of the master string or the
finite population sampling effects are expected to give unreliable estimates of the exponentν.
Moreover, care must be taken in restricting the finite-size scaling analysis to the regimeN � a

to avoid underestimating the value ofν. We note, of course, that the situation of interest is
N →∞ while a remains finite.

To conclude, the collapse of the data for differentN into a-dependent scaling functions
presented in figure 3 and summarized in the scaling assumption (15) provide a full
characterization of the error threshold transition, signalled in our model by the divergence
of τ atQc = 1/a, for largeN . We emphasize that the main advantage of our approach is that
it does not rely upon any arbitrary definition of error threshold for finite populations.
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