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LETTER TO THE EDITOR

Finite-size scaling of the error threshold transition in finite
populations
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Carlos SP, Brazil

Received 15 September 1998, in final form 10 November 1998

Abstract. The error threshold transition in a stochastic (i.e. finite population) version of the
quasispecies model of molecular evolution is studied using finite-size scaling. For the single-
sharp-peak replication landscape, the deterministic model exhibits a first-order transition at
0 = 0. = 1/a, where is the probability of exact replication of a molecule of length~ oo,

anda is the selective advantage of the master string. For sufficiently large populationvsize,

we show that in the critical region the characteristic time for the vanishing of the master strings
from the population is described very well by the scaling assumptienW /2 £,[ (0 — 0. )NV/?],
where f, is ana-dependent scaling function.

An elusive issue in the extension of Eigen’s quasispecies model [1] of molecular evolution to
finite populations is the characterization of the so-called error threshold phenomenon which
limits the length of the molecules and, consequently, the amount of information they can store
[2]. This phenomenon poses an interesting challenge for the theories of the origin of life, since
it prevents the emergence of huge molecules which could carry the necessary information for
building a complex metabolism. Moreover, since modern theories of integration of information
in pre-biotic systems involve the compartmentation of a small number of molecules, the
understanding of the effects of the error propagation in finite populations has become a major
issue for the theories of the origin of life [3].

The quasispecies model was originally formulated within a deterministic chemical kinetic
framework based on a set of ordinary differential equations for the concentrations of the
different types of molecules that compose the population. Such formulation, however, is
valid only in the limit where the total number of molecules, denotedvhygoes to infinity.

In the binary version of the quasispecies model, a molecule is represented by a stting of
digits (s1, 52, . .., 51.), with the variables,, allowed to take on only two different values, say
s¢ = 0, 1, each of which representing a different type of monomer used to build the molecule.
The concentrations; of molecules of typé = 1, 2, ..., 2 evolve in time according to the
equations [1, 2]

d.x,'

ar = Z W,'j.Xj — CD([).X,‘ (1)
J

where®(¢) is a dilution flux that keeps the total concentration constant. This flux introduces a
nonlinearity in equation (1), and is determined by the condijigrdx; /dr = 0. In particular,
assuming)_, x; = 1yields

o = ZW[ij. (2)
iJ
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The elements of the replication matii¥; depend on the replication rate or fitnessof the
strings of typel, as well as on the Hamming distan€@, j) between strings and j. They
are given by [1, 2]

Wi = Aiq" 3)
and

Wiy = Ajgt DA —g)?D i @)
where 0< ¢ < 1is the single-digit replication accuracy, which is assumed to be the same for
all digits.

The quasispecies concept and the error threshold phenomenon are illustrated more neatly
for the single-sharp-peak replication landscape, in which we ascribe the replicatianrdte
to the so-called master string, sél; 1, ..., 1), and the replication rate 1 to the remaining
strings. In this context, the parameteis termed the selective advantage of the master string.
As the replication accuracy decreases, two distinct regimes are observed in the population
composition in the deterministic case: tipgasispeciesegime characterized by the presence
of the master string together with its close neighbours, andiifermregime where the2
strings appear in the same proportion. The transition between these regimes takes place at the
error threshold;., whose value depends on the parameiessda [1, 2]. However, even in
the deterministic casgy — oo, a genuine thermodynamic order—disorder phase transition
will occur only in the limitL — oo [4—6]. To study this transition for largk, it is convenient
to introduce the probability of exact replication of an entire string, namely,

0=q" (5)
so that thediscontinuougransition occurs at
1
Qc = - (6)
a

for L — oo [1,6]. Arecentfinite-size scaling study of the sharpness of the threshold transition
indicates that the characteristics of the transition persist across a ra@ge ofderL —* about
Q. [7].

Although several theoretical frameworks have been proposed to generalize the
deterministic kinetic formulation of the quasispecies model so as to take into account the effect
of finite N [8-13], the somewhat uncontrolled approximations used in those analyses have
hindered a precise characterization of the error threshold for finite populations. In particular,
Nowak and Schuster [10] employed a simple birth and death model, whose deterministic
limit, however, did not yield the stationary distribution predicted by equation (1), as well as
numerical simulations based on Gillespie’s algorithm [14] to show that an appropriately defined
Q.(N) tends to the deterministic valugd with N~%2 for sufficiently large populations. A
similar result was obtained by neglecting the possibility of multiple errors occurring during
the replication of a molecule [12]. A more drastic approximation that neglects linkage
disequilibrium at the population level yields thé@t.(N) increases linearly with AV [13].

Of course, since there is no generally accepted definition of the error threshold fonfinite
(and for finite L as well), denoted above b@.(N), there are some arbitrariness in those
analyses.

In this paper we follow a more direct approach to characterize the error threshold transition
forfinite N, which dispenses with a definition for.(N). As mentioned before, since agenuine
phase transition occurs in the limidé — oo andL — oo only, we study a stochastic (i.e.
finite N) version of the quasispecies model with- oo andg — 1 so thatQ = ¢’ is finite.

In this limit the problem simplifies enormously as the probability of any string becoming a
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master string due to replication errors is of ord¢f. land so can be safely neglected. Besides,
since for the single-sharp-peak replication landscape the strings can be classified in two types
only: the master strings and the error tail, which comprises all other strings, the population
at any given generation can be described by the single integeb, 1, ..., N, which gives

the number of master strings in the population. The goal then is to calculate the probability
distribution that at generationthere are exactlyy master strings in the population. This
quantity, denoted b, (n), obeys the recursion equation

Pra(n) = ﬁ: T (n, m)P,(m) (7)
m=0
with the elements of the transition matfixgiven by
T(n,m) = i (N) (k) wy, (L= w,)" Q"1 - ) (8)
p k J\n
where
W, = — 8 (9)

N —m+ma
is the relative fitness of the master strings. In writing equation (8) we have followed the
prescription used in the implementation of the standard genetic algorithm [15]: first the natural
selection process acting via differential reproduction is considered and then the mutation
process. A similar formulation was used to study the Muller's ratchet phenomenon in a
smooth, multiplicative replication landscape in which only unfavourable mutations are allowed,
leading to a continuous decrease in the average fithess of the population [16]. We note that
>, T(n,m)=1VmandT (0, 0) = 1. Moreover, the largest eigenvalueTos Ao = 1 and its
corresponding eigenvectorl'Es: (1,0, ...,0). This stochastic model is easily recognized as
the celebrated Kimura—Crow infinite alleles model [17, 18] which has been extensively studied
within the diffusion approximation for larg&’. However, for arbitrary values af anda
the solutions of the partial differential equations are too complicated to be of any use for our
purposes [18].

As for finite N the fluctuations, either in the reproduction or mutation processes, will
ultimately lead to the irreversible loss of all copies of the master string from the population,
the asymptotic solution of equation (7) is simpty, (n) = §,0. Our goal is to determine how
the characteristic time;,, that governs the vanishing of the master strings from the population
depends oV, Q anda.

Before proceeding to the analysis of the stochastic problem, it is instructive to briefly
discuss the deterministic limiY — oo. In this case the average number of master strings
obeys the recursion equation

N N
(nysr =Y > nT(n, myP,(m)

n=0 m=0
= Qa(n), (10)
whose solution ign), = (Qa)’ (n)o. Hence, in the deterministic regime we find
1
_ _ 11
"7 Tin(ga) ()

which diverges aD = Q. = 1/a, thus signalling the existence of a phase transition in the
limit N — oo. Clearly, forQ > Q. the master strings are always present in the population
so thatr is infinite in this entire region.
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Figure 1. Logarithm of the characteristic time for the vanishing of the master strings from the
population, Inr, as a function of the probability of exact replicatian, fora = 2, andN = 100
(%), 200 (), 300 (), 500 (1), and 600 &). The solid line is the theoretical prediction fir— oo.

We now consider the finit& regime. In this case the recursion equations for the moments
of n do not yield useful information since, as usual, the moment of opddepends on the
moment of orderp + 1 evaluated at the previous generation [16]. We then resort to a direct
calculation of the probability distributiof®,(m). More specifically, we will focus on the
calculation ofP, (0), since this is the quantity that measures the rate of vanishing of the master
strings from the population. Although, (0) could be evaluated through a series of matrix
multiplications, a simple linear algebra calculation yields [18]

N
Py (0) = Z Cnan)";
n=0
=1 +C1110)x§_ +...+ CNlNOAZ\/ (12)

wherex,, are the eigenvalues of /,o are the zeroth components of the eigenvedigrendc,
are parameters that depend on the initial sife:). Also we have usedy = lpp = ¢ = 1.
Assuming, without loss of generality, thatd i, > --- > Ay > 0, in the limit of larger we
find

1-P,0) ~Ce'/" (13)

where

1
- 14
’ In A1 ( )
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Figure 2. Logarithm of the characteristic time for the vanishing of the master strings from the
population, Inc, calculated ap . = 1/a as a function of the logarithm of the population sizeNn
fora =2 (0), 10 (&), and 50 (J).

andC isaconstantthatdepends on theinitial state. Thusthe problem becomes the one of finding
the second largest eigenvalue of the nonsymmetric matriince the largest eigenvalue and

its corresponding eigenvector are already known, this numerical problem yields easily to the
vector iteration method [19]. Alternatively, we could findoy following the time evolution

of P, (0), obtained directly through the recursion equations (7), for a few generations and then
plotting In[1 — P, (0)] against the generation numherWe have verified that both methods
yield the same results far.

In figure 1 we present the dependence aof bm the probability of exact replication of an
entire string,Q, for a = 2 and several values @&/. The finite N effects are negligible for
values ofQ smaller than, though not too clos@,, as indicated by the very good agreement
between the finitév data and the theoretical prediction f8r — oo given in equation (11).
Since we expect to increase exponentially with increasiag for 9 > Q., and to tend
towards its limiting value, equation (11), also exponentially witifor 0 < Q., the issue
is then to determine the dependence afn N at the critical pointQ = Q.. In figure 2 we
present Irr calculated aD. = 1/a against InV for different values ofi. These results clearly
indicate that at the critical pointincreases likev'/2, irrespective of the value af. Once we
have identified the rescaling of inthat leads to the collapsing of the data for differénhat
0 = 0., the next step is to determine the sharpness of the transition, namely, the range of
Q aboutQ. where the transition characteristics persists. This is achieved by assuming that
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Figure 3. Properly rescaled logarithm of the characteristic time for the vanishing of the master
strings from the population, lry In N1/2, as a function of Q — Q) N/2 for (from top to bottom

atQ = Q.) a = 2, 10 and 50. The convention # = 200 (), 300 (J), 400 (©), 500 (1), and

600 (x). Fora = 10 and 50 only the data fa¥ > 400 are presented.

the size of this region shrinks to zero liké~>" asN — oo, where the exponent > 0

is estimated using finite-size scaling or, more precisely, the data collapsing method [20]. In
figure 3 we show the collapse of the data for differdhbbtained withv = 2 fora = 2, 10

and 50. Although for = 2 we can achieve a good-quality data collapse using relatively small
population sizesN > 200), for larger values oi, however, a similar quality of collapsing

can only be obtained using larger values\ofi.e. N > 400). In summary, the results of the
data collapsing method indicate that the dependenaeanf N in the critical region is very

well described by the scaling assumption

T =NY2£[(0 — Q)NY? (15)

where f, is a scaling function, whose specific form depends on the parameter
To appreciate the effect of the selective advantage parametethe quality of the data
collapsing results presented in figure 3, we next consider in some detail the eas® and
N finite. Usingw,, — 1 form > 0 yields
N
T(n,m)=T{n)= < )Q"(l— Q)N m > 0. (16)
n

As before,T' (0, 0) = 1 andT (n, 0) = 0 forn > 0. In this case the eigenvaluestofan easily
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be analytically calculated yieldingy = 1,11 = fo:l T(n), , =---= Ay =0. Hence,
1
= 17
T a- 0" )

Finally, taking the limitsQ — Q. = 0 andN — oo, we can easily verify that = 1 in this

limit. This interesting result suggests that uncontrolled approximations and simplifications
of the original model which enhance the selective advantage of the master string or the
finite population sampling effects are expected to give unreliable estimates of the exponent
Moreover, care must be taken in restricting the finite-size scaling analysis to the fégime

to avoid underestimating the value of We note, of course, that the situation of interest is

N — oo while a remains finite.

To conclude, the collapse of the data for differdhtnto «-dependent scaling functions
presented in figure 3 and summarized in the scaling assumption (15) provide a full
characterization of the error threshold transition, signalled in our model by the divergence
of r at Q. = 1/a, for largeN. We emphasize that the main advantage of our approach is that
it does not rely upon any arbitrary definition of error threshold for finite populations.

The work of JFF was supported in part by Conselho Nacional de Desenvolvimentfi€ient
e Tecnobgico (CNPq). PRAC is supported by FAPESP.
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